The generator matrix

 1  0  1  1  1 X^2+X  1  1 X^2  X  1  1 X^2  1  1  1  X  X  1  1  1  1  1  1  1 X^2 X^2  1  1  1  1  1 X^2 X^2+X  1  1  1
 0  1  1 X^2+X X^2+X+1  1 X^2 X+1  1  1  X X^2+1  1  1  0 X^2+X+1  1  1 X^2+X+1 X^2  X X+1 X^2 X^2+X+1  0  1  1  X  X X^2 X^2+X+1 X^2+1  X  1 X^2+X+1 X+1 X^2+1
 0  0  X  0 X^2+X  0  X X^2 X^2+X X^2+X  X X^2  X  X  0  X X^2 X^2+X X^2 X^2+X X^2+X  0 X^2  X X^2+X  X  0 X^2+X  0 X^2+X  X X^2+X  X X^2 X^2  0  0
 0  0  0 X^2  0  0  0 X^2 X^2  0  0  0 X^2 X^2  0 X^2  0  0  0  0 X^2 X^2 X^2 X^2  0 X^2  0 X^2  0 X^2  0 X^2  0 X^2  0  0 X^2
 0  0  0  0 X^2  0  0  0  0 X^2 X^2  0 X^2  0 X^2  0 X^2  0 X^2  0 X^2 X^2 X^2 X^2 X^2  0 X^2  0  0 X^2 X^2 X^2  0 X^2  0  0 X^2
 0  0  0  0  0 X^2 X^2  0 X^2  0  0 X^2 X^2 X^2 X^2  0 X^2  0  0  0 X^2  0  0 X^2 X^2  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0 X^2  0

generates a code of length 37 over Z2[X]/(X^3) who�s minimum homogenous weight is 32.

Homogenous weight enumerator: w(x)=1x^0+118x^32+56x^33+334x^34+128x^35+368x^36+144x^37+298x^38+128x^39+282x^40+56x^41+90x^42+19x^44+14x^46+10x^48+1x^52+1x^56

The gray image is a linear code over GF(2) with n=148, k=11 and d=64.
This code was found by Heurico 1.16 in 0.124 seconds.